Q.P. Code: 16EE203

R16

6M

6M

6M

5M

8M

4M

T					
Reg. No:					
Ney, NO.					

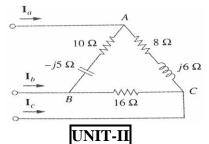
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

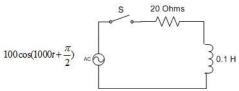
B.Tech II Year I Semester Supplementary Examinations June 2019 NETWORK ANALYSIS & SYNTHESIS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 60


(Answer all Five Units $5 \times 12 = 60$ Marks)

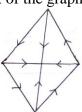
UNIT-I


- **a** Derive the relation between phase and line quantities in a 3-phase balanced Delta connected 6M system with the help of phasor diagram.
 - **b** An unbalanced 4 wire star connected load has a balanced voltage of 400 V. The loads are Z1=(4+j8) Ω , Z2=(5+j4) Ω , Z3=(15+j20) Ω . Calculate line currents, current in neutral wire, total power consumed by the load.

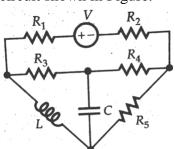
OR

- **2** a Derive the relation between phase and line quantities in a 3-phase balanced Star connected 6M system with the help of phasor diagram.
 - **b** The circuit shown in Figure with an unbalanced Delta connected load is supplied by 6M balanced line to line voltage 440 V in positive sequence. Find line currents when V_{ab} taking as reference.

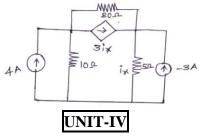
a For the circuit shown in Figure find the current when the switch is closed at t=0.


b Derive the transient response of an RC circuit with DC excitation.

OR

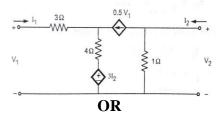

- **4** a A series RLC circuit with $R=20~\Omega$, L=0.05~H and $C=20~\mu F$ has a constant voltage 100V 7M applied at t=0. Using Laplace transforms, find the current transient assuming zero initial conditions.
 - **b** Derive the transient response of an RL circuit with AC excitation.

UNIT-III


- 5 a Define the following terms with suitable example
 - (i) Tree (ii) Co-tree (iii) Oriented graph (iv) Fundamental loop
 - **b** Determine the fundamental tie set matrix of the graph shown in Figure

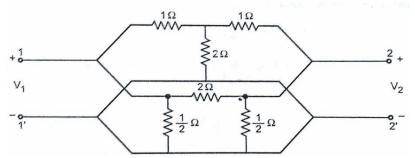
6 a Develop the dual network of the circuit shown in Figure.

b Determine ix for the following network using network topology of the network shown in 6M Figure.


7 a Express y-parameters in terms of transmission parameters for a two port network.

6M

b Calculate 'h' parameters of the network shown in Figure.


6M

6M

8 a Determine Y- parameters of the network shown in Figure.

6M

b Express Z-parameters in terms of h-parameters for a two port network.

6M

UNIT-V

9 a Derive the design equations of m-derived high pass filter

5M 5 7M

6M

b Design K-type band pass filter having a design impedance of 500 Ω and cut-off frequencies f_1 =1Khz and f_2 =10Khz

OR

10 a Design a π-type attenuator to give 20 dB attenuation and to have a characteristic impedance 6M of 100Ω .

b Design a T- pad attenuator to give an attenuation of 60 dB and to work in line of 500 Ω impedance.

*** END ***